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I. INTRODUCTION 

Some dynamical properties of the Xlr, symmetry model of strong interactions 
(I-13) have been considered by Cutkosky, Kalckar, and Tarjanne (14). It was 
possible to obtain a reasonably satisfactory description of the P-wave baryon- 
meson resonances, except that in both the triplet and the R-invariant (3, 6, 15) 
octet versions of the model it did appear that too many resonances would be 
predicted. 

In an extension of the model (16) the mesons and baryons were themselves 
treated as bound states, in accordance with current ideas (I?‘, 18). Only the 
triplet version of the Si7, symmetry model was considered, although it proved 
to be possible to generalize the discussion to the group SU, (the generalized 
Sakata model). A mechanism was suggested whereby the particles could be 
formed through the action of long range forces between the various particles of 
relatively low mass. It was assumed that the effects of the unknown short range 
forces could be simulated by cutting off the singular short range effects associated 
with the long range forces. It will be noted that if the baryons are to be formed 
as bound states of baryons with vector or pseudoscalar mesons, the lowest state 
must be 1j1;2 , not SljZ . It was suggested that this could arise from the strong 
spinorbit force associated with vector meson exchange. Low-lying scalar COH- 
tinuum boson states (the one-dimensional multiplet is expected to be the most 
important) will also contribute to the proper ordering of the levels. Chew (19) 
has subsequently pointed out that exchange of baryonic states, especially t)he 
I’s;2 excited state, can play an important role. 

In this paper we will apply the self-consi&ent bound state approach to the 
octet model. We follow the notation of ref. 14. We will not discuss the boson 
Aates, except to say that these are expected to be quite similar to the boson 
states of the triplet model, although the B + B compouents of these states will 
be more important. The strongest boson-boson forces are expected to occur in 
the one and eight dimensional multiplets. In particular, we assume here that the 
important states are vector and pseudoscalar states in the (1, 1) multiplet, and 
scalar states in the (0, 0) multiplet. Other (0, 0) states could easily be included. 
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The octet model has the property that the B-n coupling constants and the 
“electric” and “magnetic” R-V coupling constants have ratios which are not 
completely fixed by the SUa symmetry-in each case there is an extra “mixing 
parameter” (3). Since the octet model allows the possibility of an additional 
symmetry operation R-the reflection of charge and hypercharge-Gell-Mann 
suggested that this arbitrariness might be removed by postulating invariance 
under R (3). It will be shown here that within the framework of our dynamical 
model, R-invariance is not compatible with the existence of only eight baryon 
states.’ On the other hand, in this dynamical model it is not necessary to invoke 
an extra symmetry principle in order to fix the ratios of the coupling constants, 
because these are determined by the self-consistency requirement.2 The self- 
consistency of the mixing parameters will be discussed in the next section, 
within the approximation of keeping only a few selected graphs. 

In Section III we will estimate the mass differences within the baryon multi- 
plet. 

In the remainder of the paper we will examine the predictions our model gives 
for the properties of the P312 , 0312 , and more highly excited states, and show 
that these agree with the limited experimental data that is currently available. 
Most of the group theoretical calculations we shall quote have been reported 
elsewhere (1.4, dl), but are summarized in the Appendix for easy reference. 

In a dynamical model such as that considered here one has the possibility of 
making precise calculations of the predicted ratios of coupling constants and of 
the widths and relative positions of the resonances. In the present paper, how- 
ever, we attempt to draw only such qualitative conclusions from the dynamical 
equations as do not require elaborate computations. The exploratory calculations 
reported here must eventually be supplemented by a more detailed analysis. 
This further study of the model is encouraged by the good agreement between 
the empirical observations and our exploratory calculation. 

II. SELF-CONSISTENCY OF THE BARYON STATES 

A. DISCUSSION OF VERTICES ANU GRSPHS 

The meson-baryon couplings 
BiC&$l’( IIk or V,) 

are linear combinations of two terms (3). 

1 There is also some empirical evidence against R-invariance, which has been discussed 
in refs. 6, 7, and 20. 

2 One might ask at this point whether all of the coupling constant ratios implied by such 
symmetries as SU, or even isospin (SUZ) invariance, as well as the particular way in which 
the symmetries are broken, are a result of the requirement of self-consistency of the dynami- 
cal equations, or whether these special symmetries play the more fundamental role of dis- 
tinguishing among many conceivable theories. Since the SU, model is, in fact, 
self-consistent at the level of approximation considered here, this question does not need to 
be considered further in the present paper. 
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C’;:j = AFtj + BDqj , (1) 

where the relative values of A and B may depend on the type of meson and in 
the case of the vector meson, on bhe type of coupling. When one focuses one’s 
attention on the K-N coupling constant gas , it is convenient to write (1) in 
Crell-Maim’s form (3) 

C$j = (23)1”grN(aD:j + (1 - a)F:j). (2) 

The parametrization which is most convenient for dynamical calculations is 

C;j = g( (18)-l’” sin 0F:j + (lo)-“” cos 0D%j]. (3) 

The relation between (2) and (3) is given by (Y = (1 + ?&“% tan 0)-l. We 
shall denote by 8 the nB mixing angle and by cp and q’ the Dirac and Pauli VB 
mixing angles. 

This arbitrariness is not present in the boson couplings. The Bose statistics 
ensure that the II”V coupling has the F form, and the HV’ coupling has the D 
form. The V3 vertex must be symmetrical under the interchange of every pair, 
which leads to the following coupling: 

In the expression (4) the Pi are the momenta of the three lines, considered 
positive when directed into the vertex, with c I’, = 0. The couplings to the 
scalar states are: 

G.mAhi , G.z,vAV?‘, , and GAd”. 

The boson vertices therefore involve 7 coupling constants. These coupling toll- 
stants are, in principle, to be determined from the self-consistency of the boson 
states, but are not yet known to us, and we must therefore be content with a 
qualitative discussion of the baryon problem. 

The one particle exchange graphs which contribute to the baryon structure 
are shown in Fig. 1. It is sufficient for us to treat the vector and scalar continuum 
states as though they were particles with a discrete mass. In most of our dis- 
cussion we will neglect the baryon exchange graphs Bl-6. At the end of this 
section we will discuss briefly these effects. The D3,2 state of the baryons seems 
to be on nearly the same trajectory as the P 112 and Fe,2 baryon states, which 
suggests that the greater part of the binding potential may come from the non- 
exchange graphs. 

We first examine the contribution to the baryon-meson potentials in the (1, 1) 
representation. Since this representation occurs twice in the decomposition of 
the direct product ( 1, 1) 0 ( 1, 1) , once in a symmetric (S) and once in an anti- 
symmetric (A) combination, each component of the potential will be a 2 X 2 
matrix. (By potential, we mean more precisely the Born approximation to the 
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FIG. 1. One particle exchange graphs 

scattering amplitude F, which is similar to the function N of the N/D method 
(2% 239.) 

B. THE R INVARIANCE CATASTROPHE 

If in graphs VI and V2 there is a matrix Fi at each vertex, the potential de- 
pends only on the (1, 1) character of the multiplets and not on their symmetry. 
The “bootstrap” model determines the sign of the BBV coupling constant, so 
the BV potential can be forced to be attractive. The sign of the Bn potential 
then depends on the relative sign of the boson coupling constants. Let us assume 
that in the bootstrap model of the rII, there is an attractive VII force arising from 
V exchange; then the signs must be such that the Bn force will also be attractive. 
The graphs V3 and K3 have one F vertex and one D vertex, so that the S(A) BII 
states are coupled to the A(S)BV states, with the same strength in both cases. 
So from these four graphs, we would infer the existence of another baryon octet 
(B’), which would have a behavior under R which was opposite to that of the 
original octet. 

Graph nl has two D vertices, so this term in the potential has opposite signs 
in the S and A states. Let us assume the signs are such that it gives an attraction 
in the A multiplet. (Actually, the spin dependence of IT1 is different from that 
of VI; we will assume that we can argue on the basis of the expectation value of 
the potential in the baryon state.) Also note that the B + A state is only coupled 
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to the A combination of B + V, and to the S combination of B + II. If all of the 
coupling constants are approximately of the same magnitude, we can estimate 
that the average potential in the B’ state will be at least half that of the B state. 
Xow, for deeply bound states, the binding energy is much less sensitive to the 
strength of the potential than it is for weakly bound states. It is to be expected 
that halving the effective potential would still lead to a bound B + V state.” 

If a bound or resonant B’ state arises, then the self-consistency calculations 
must be redone with this state included. We must introduce vertices with two 
B’ lines-these have the same form as vertices with two B lines-and also 
vertices with one B and one B’. The latter vertices use the D coupling for I/ 
mesons, and the F coupling for II mesons. Each solid line in the graphs of Fig. 1 
must then be allowed to represent either a B or a B’. It is not hard to see that if 
all the B’ coupling constants are assumed to be equal to the corresponding B 
coupling constants, and if the B and B’ masses are assumed to be equal, then 
the potentials in the B and B’ states must be identical, so that this choice is 
self-consistent. The difference in the potentials in the A and S states now does 
not affect the B - B’ mass difference, it merely makes the B(B’) more likely t,o 
disassociate into a B(B’) plus a meson than into a B’(B) plus a meson (or 
possibly vice-versa). We wish to argue that no other self consistent solution 
arises from the model. 

We think in terms of the partial wave dispersion relations for eight coupled 
channels: B + ( Vi , HI, A) and B’ + (Vi , II, A) (where i distinguishes the 
two V spin states). We keep the mass MB fixed at its empirical value ; the po- 
tential is a function of ill’,, , the twelve baryon-meson coupling constants, and 
an over-all cutoff parameter A. The location of the B and B’ poles then gives 
two relations among these parameters. The ratios of the coupling constants are 
given by the eigenfunctions of the two scattering amplitudes. The magnitudes 
of the coupling constants are determined from the residues of the two poles. 
Note that the four B’B coupling constants seem to be determined twice-once 
from the B state, and once from the B’ state. However, there are really only four 
independent equations (which may be derived from a dispersion relation for the 
vertex), even though in the partial wave method with an approximate potential 
the superfluous equations might not be satisfied exactly. 

It is seen that there are fourteen nonlinear equations to be solved for fourteen 
parameters. A solution exists with MB8 = Al, ; we consider it very unlikely 
that another self-consistent solution with MB, # MB could exist, because of the 
fact that the potential as calculated under the extreme assumption that MBC = P 
leads already to ill8, - fl/, 5 Jr, . If additional cutoff parameters were used 

3 This argument is based on the fact t,hat the radius of the bound state is comparable to, 
or smaller than, the range of the binding potential, and can be formulated either in terms of 
ordinary potential theory or tile partial wave dispersion relations. 
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to modify the potentials, self-consistency with ilf,, >> ilfB could be obtained. 
However, this would imply that in any R-invariant model with only eight baryons 
the structure of the baryons would depend in an essential way on short range 
phenomena which lay outside the scope of the model. 

The existence of another octet with ilfBf - ill, k 700 Mev is, of course, not 
yet ruled out by experiment. Nevertheless, this energy is sufficiently high that 
we must give up either R invariance or the hope that the baryon structure 
involves primarily the long range forces among the light particles. 

C. SELF-CONSISTENCY OF THE GENERALIZED MODEL 

If R invariance is denied, the potentials from graphs VI, V2, and II3 have the 
form 

and those from Bl and 113 have the form 

v = vo 
( 

-?j cos x sin x 

sin x cos x b 

(5) 

(6) 

where x denotes any of the angles 0, cp, ‘p’. We write the coupling constants for 
the pseudoscalar, vector, and tensor interactions in the form ga, gb, and gb’, 
where the normalization is chosen as in Eq. (3), with the extra condition a2 + 
b2+b’2= 1. 

It is sufficient for our purpose here to proceed as though the vector and 
pseudoscalar mesons had the same mass, and all elements of the Born approxi- 
mation scattering matrix had the same energy dependence, because this simplifi- 
cation affects primarily the relative values of a, b, and b’, which we are not able 
to calculate anyway, and does not greatly influence the mixing angles. The 
N/D equations then take an especially simple form, because all of the 6 X 6 
matrices are simultaneously diagonalized when we diagonalize the Born matrix. 
One eigenfunction of the Born matrix is then to be 

+ = (a cos 0, a sin 0, b cos p, b sin ‘p, b’ cos p’, b’ sin cp’) 

according to the self-consistency requirement. 
The amplitude from graph 112 has the form 

xb sin cp + x’b’ sin cp’ xb cos cp + x’b’ cos (Df 
F,r = g 

xb cos p + x’b’ cos cp’ ab sin cp + x’b’ sin ‘p’ 
(7) 

where x and x’ are to be considered as numbers obtained by averaging in some 
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way OVCY the energy. Likewise, the amplitude from graph II3 1x3~ be written as: 

za sin 0 za cos e x’a sin e z’a co9 e 
Fna = g 

za cos e za sin e x’a cos e x’a sin e ). 
(8) 

The equations for the first two components of I/J are 

Xa cos e = a,4 cos e + aB sin e. 

ia sin 0 = aA sin 0 + aB cos 0, 
(9) 

where the eigenvalue X is a measure of the total effective strength of the inter- 
action, and 

.4 = b( z + s) sin 9 + b’(x’ + s’) sin +D’ 

B = b(z + JJ) cos p + b’(x’ + .x’) cos p’. 
ilO) 

One solution of (9) is a = 0, which we reject because it is not consistent with 
the approximation of neglecting T’3. If a # o, we have: 

iz tan 0 + B = A tan 0 + B tall” 0. (111 

A solution of this is B = 0, which may be achieved with cos q = cos (p’ = 0. 
If this is true, the other four equations (not written) are satisfied with 0 = 0. 
This is the R-invariant solution, which, while superficially self-consistent, leads 
to too strong an attraction in a state orthogonal to #. (There may also be other 
solutions, which WC have not studied, with B = 0.) 

If B # 0, we obtain from (11) that 0 = f45”, and 

X = 29(x + X) sin(e + q) + 23’(~ + x’) sin(e + q’). (12) 

If we consider the remaining components of $, and just take into account graph 
Vl, we find that a possible solution is q = cp’ = e. However, this solution is still 
not uniclue; other values of cp and cp’ are also consistent with 0 = f4.5”. These 
other solutions depend on the values of the X’S, y’s, and x’s (where the y’s are 
the VI amplitudes). When the other graphs are included, the values of the self- 
consistent angles will be modified, hut we can not expect the nonuniyueness to 
disappear. 

We do not have any general criterion for choosing among these different 
solutions, except that we require X > 0, so that the potential is really attractive. 
We have already given an argument for believing that 1’1 and li2 are simul- 
taneously attract’ive; also, it turns out that x and x have the same sign. We may, 
however, without loss of generality at this point, choose 0 so that 0 < CY < 1. 
This means that we choose to define, provisionally, the nucleons to be the 
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doublet with the larger coupling to pions, and the ,“‘s to be the doublet with 
the smaller pion coupling. In the next section we shall show that this leads to 
MN<MZ. 

The different possible solutions have different values of A. In order to achieve 
self-consistency, the cutoff A is adjusted (inversely with A). In the future, it 
may be possible to go beyond the one particle approximation and calculate A 
approximately, thereby perhaps narrowing the choice of solutions. Even within 
the one particle exchange approximation, we must be sure that the other eigen- 
values calculated with the same potential are not so large that other, unwanted, 
bound states would be generated; this was the way we ruled out the R-invariant 
solution. (These different eigensolutions of the linear problem with a given 
potential must not be confused with the different self-consistent solutions of the 
nonlinear bootstrap problem.) 

Let us first look at the other (1, 1) states, lumping together the vector and 
tensor couplings of the vector meson (so we can ignore the primed variables 
and parameters). We consider only graphs VI, V2, and H3, and the solution 
6 = cp = 45”. We have a 4 X 4 matrix which has two zero eigenvalues, and two 
others given by 

x1 = 21’2b(2 + z), X2 = 2”26(y - x), b = 422’ + z(x: - y)]-“‘. (13) 

We expect x, y, and z to have a similar magnitude, or X2 << X1 . While the actual 
problem is much more complicated than this, the above results suggest that it is 
reasonable to expect that a solution could be found in which there was only one 
strongly attracted (1, 1) state. 

We may note here that the B + A state is automatically coupled directly 
only to the self-consistent B + n state through graphs IX6 and B6. Moreover, 
the strength of the coupling is independent of 0. The existence of two VB states 
makes the effect of graphs V5 and B5 a little more complicated. The potential 
from graphs Al and A2 is independent of the multiple& but is not so strong, 
since there is only one A particle, but eight n’s and eight V’s. These arguments 
are essentially independent of the A spin and parity. 

The strength of the forces in the other multiplets obtained through the re- 
duction of (1, 1) @ (1, 1) may be estimated from Table I, which lists the average 
potentials from graphs VI-3, nl, n3, and B2. We have assumed that the differ- 
ence between cp and cp’ can be neglected (or else that b’ << b) . For the ( 1, 1) 
multiplet, the potential listed is the matrix element of the potential between 
normalized states having the self-consistent values of the mixing angles 0 and q. 
We have not taken specific values for these angles, but we do wish to assume, 
provisionally, that B and cp do not differ greatly from 45”. The signs of X, y, and 
z are assumed to be positive. The parameter E is positive in the Pip state (as in 
the static nucleon model, .$(P3,2) r~ - 2t( Pl12) ) . The signs of q and p are not 
known because they depend on the sign of gnvv . 
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TABLE I 

POTENTIALS ARISING FROM VARIOUS GRAPHS~ 

Vl (z/b) 

(2, 2) - :*$ sin ‘p 
13, 0) - (2/5112) cos q 
(0, 3) +(2/51’2) cos p 
(1, 1) sin q (1 + 2 co9 9) 
(0, 0) 2 sin $0 

v2 (xb) 

(2, 2) -25 sin ‘p 
(3, 0) - (2/5”2) cos rp 
(0, 3) + (2/5’@) cos ‘p 
(1, 1) sin ‘p + cos (0 sin 2 0 

(0, 0) 2 sin cp 
- 

n3 @a) 

c42i 
(3, 0) 
(0, 3) 
(1, 1) 
(0, 0) 

@, 2) 
(3, 0) 
(0, 3) 
(l,l) 
(0, 0) 

-,2$ sin 9 
- (2/51i2) cos 6 
+(2/51’2) cos e 
sin ‘p + cos ‘p sin 28 
2 sin 8 

n1 Cm) 

3g cos e 
-+i cos e + (2/5112) sin e 
-es cos e - (2/51’2) sin B 
cos O(sin2 p -N cos* VP) + sin e sin 2~ 
2 COB e 

v3 (i-b) 

(2, 21 
(310) 
(0, 31 
(1, 1) 
(0, 0) 

?5 cos $0 
-jg cos p + (2/51f2) sin ‘p 
-&$ cos ‘p - (2/51’2) sin ‘p 
cos B(sin? ‘p - $& co9 VP) + sin e sin 2~ 
2 cos $0 

B2 ($a21 

(2, 2) - (36 ~0s~ e + 3s sin2 e 
(310) - ($5 ~0s’ e + (4/59 sin e co8 e) 
(0, 3) --$g co9 0 + (4/5”2) sin 0 cos 8 

(1, 1) ,34 ~0.5~ e + 2 sin2 e co9 e - sin4 e 
(0, 0) P(sin” e - cosz e) 

5 Each entry is to be multiplied by a factor (sb), (yb), etc, as indicated. A factor 3 (2)-liz 
has been absorbed into the definitions of z, y. etc. 

Table I shows that the forces in the (0, 0) state and the (1, 1) state have 
nearly the same strength. In the (0, 3) state the potential is perhaps about half 
as great, but the relative value is very sensitive to the sign of 77 and <. In both 
cases, the relative strength of the potentials also depends on 0 and q. 
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The baryon exchange graphs give a contribution to the potential which 
alternates in sign in states with successive values of j. That graph B2 is attractive 
in the ( 1, 1) PI,2 state is seen from Table I; the same is easily seen to be true of 
B6. Whatever the relative signs of the BBA and BBII couplings, graph B4 has 
a positive expectation. Graph B.5 is more complicated, but the same is certainly 
true when the B + A state has little energy. We shall not discuss Bl and B3 here. 

It will be shown in Section V that when 10” 5 8 5 60”, the Bn interactions 
are favorable for generating a j = s,i( +) resonance (B*) in the tenfold (3, 0) 
mult’iplet. The HI potential arising from B* exchange is obtained from the 
crossing matrix in Table II. This potential plays the dominant role in Chew’s 
mechanism (19) for producing the B as a bound state. It is four times as strong 
in the Z’r,z state as in the Paiz state, in the approximation in which one neglects 
the II mass. According to Table II, the B* exchange potential is strongly re- 
pulsive in the (0, 0) multiplet. There is an almost equally strong attraction in 
the ( 1, 1) multiplet, in an eigenstate which corresponds to a mixing angle given 
by tan 0 = 5”*( 1 + 6l’*)-‘, or 0 = 33”. In the other states, this potential is 
unimportant. 

We conclude that the boson exchange graphs, and also all the baryon exchange 
graphs which can be easily studied, are strongly attractive in the (1, 1) multiplet, 
in the PI/z and F5p states. The baryonic potential is repulsive in the OS/2 state. 
A detailed calculation would enable one to calculate the shapes of the evenand 
odd Regge trajectories. Fortunately, a qualitative value for 0 is obtained inde- 
pendently of such a detailed calculation, because both types of graphs lead to 
similar values. 

It is interesting to observe that if 20” < 0 < SO”, the flN* coupling constant 
is particularly large; in the virtual dissociation N + B + II, more than two 
thirds of the time the B + II combination is N + a, even if the mass differences 
are neglected. As a consequence, many of the discussions of S = 0 baryon states 
in which strange particles were disregarded remain good approximations in the 
SU, symmetry model. 

III. THE BARYON MASS DIFFERENCES 

Our model of the baryon mass differences is based on the observation that the 
lightest baryons are coupled most strongly to the lightest pseudoscalar mesons. 
We assume the mass differences of the pseudoscalar mesons are given, and do 
not try to explain them. We assume temporariIy that all other sources of dis- 
symmetry in the baryon problem, such as the coupling constant ratios and the 
vector meson masses, may be disregarded. 

Gell-Mann (5) and Okubo (8) have given arguments for the validity of the 
following empirical mass relations : 

60 = iIf,* - g&f,” - k&’ = 0, (14) 



TABLE II 
CROSSING ILIATRIS -4, MTLTIPLIED BY 120" 

(1, 1) 
(0, 0) 12, 2) (0, 3i (3. 0) 

A S Q 

(0, 0) 15 15 -15 - 15 -15 15 0 

(2 , 2) 405 21 27 27 135 81 0 

(0, 3) -150 10 30 30 0 (i0 -3o&! 
(3, 0) -150 10 30 30 0 Ii0 +30& 

A -120 40 0 0 60 - 60 0 

s 120 2-I 48 48 - co - xi 0 

Y 0 0 -48& +48& 0 0 0 

‘I This gives the potential in the wlurnn multiplet arising from an exchanged row multi- 
plet . 

Au G j,281,’ f !.zil/z’) - “&ill.,’ - ,$~A/~’ = 0. (1.3) 

In our model, ( 15) will he a consequence of assuming ( 14). 
We denote by (Na) a normalized 7’ = 1 2 stat#e containing one nucleon and 

one pion, and use a similar notation for other B + II states. The explicit de- 
composition of ( 1, 1) 0 ( 1, 1) has been given by many authors so we only need 
to cluote the results here (21, Es, 25, 26) : 

qN z (l.a sill 0 + :jz;i-“’ cos O)(N7r) + ( ?.j sin 8 - Jg.Y1” cos fI)(Nq) 

- (42 sill 0 + L,:‘,-“” cos B)(AK) - (I,2 sin 0 - j$-l’u cos 0) (SK), 
(16a) 

ti3 = (J i sill e + :j,~~-“’ cos e)xk’) + (1; sin e - $$Fzia cos e)(iik;) 

- (!,h sill 0 + $i,3-‘iz cos e) ( zq) - (Ji sin e - 3,g-li2 cos e) (ET) (l") 

#A = (2-l” sin e + 10-l’” cos e)(,NK) + (ji)“” cos e(za) 

(IGC) 
- iI F-1’s cos O(A,) - (2F siu 0 - lo-“” cos e) (E’k’) 

+2 = (6-l’” sin e - (FiCb)1’2 ~0s e)(NK) + K1’2 cos e(z?) 

- (?$)“” sin e(h) + S-l” cos e(sT) (Ed) 

- (P sine +(340)"" cos e)(z:kT)~ 

The position W2 of a zero of D (in the N/D method) will be a function of tlx 
masses that were assumed in calculating D from its dispersion relation. We 
write : 

/3 = dW”,‘dM,“, 7 = dW2/dMn2. (17) 
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These are calculated for a one-channel problem, that is, on the assumption that 
only one given B and one given II enter into the state. In our problem we have to 
calculate the expectation values in the states (IS), so that, for example: 

dM,’ = @[(l/i + 5-1’o sin 0 cos 0) dMN2 

+ (,2! sin’ 0 + $$( 5)-l” sin 0 cos 0 + ( l/io) cos’ 0) dMa2 

+ (yisin2t9 - 3$(S)-“” ’ sm e cos e + (yi,,) COST e) dM;] 

+ y[( $$ - F1’” sin 0 cos 0) dMK2 

(Is) 

+ (SC sin2 e - 42(5)-“2 sin e cos e + (>&) COST e) dM,2 

+ ( y4 sin2 e + 3,s (5)-I” sin 8 cos e + (yao) COST e) dM,‘]. 

We express the combinations A, and 

Al = AlA2 - &‘, A, = AfE2 - M,‘, 

in terms of 60 and & = ill,,” - A!.!.,‘. We find that: 

A, = a1(/3Ao + Y&I) 

Al = -L3(2ado + %qM, + ~92) - Y(~U&I + GUI&> 

AZ = p( -a& - ~&AI + PiA,) + yu2(60 + P@I), 

where 

al = $g c0s2 e - 4; sin2 e 

a2 = 2(5)-l” sin e cos 8. 

Since 60 = 0, (20a) gives A0 = 0, and we also find: 

AI = -rGVS, A, = r&Rz/S, 

where 

RI = ~jul + ~4/4P(5uzS - Sal) 

Rz = 9&32( 1 + 3/3u1) 

s = 1 - >@( 1 - 34 - j/&2(5u22 + 34. 

(19) 

(2Oa) 

(2Ob) 

(333) 

(21) 

(22) 

In view of the crudity of our model, it is not worth while to calculate @ and y 
from an exact solution of the N/D equations, but we must at least try to estimate 
plausible values for them. We write the integral 

D(s) = 1 - j &)N(s’) ds’,‘?r(s’ - s) (23) 



.I MODEL OF BARYOS STATES 427 

as 

U(s) = 1 - A/@ - S), (24) 

where 12” is an average value of s’ in (23) (fi is about 2MR or 3MB), and 

A = 
I 

(n” - s)p’N’ ds’/?r(s’ - s), (25) 

which we assume to be nearly independent of s when s is near W”. We shall also 
use the approximations 

dn2/dnl’ = 0 (26a) 

and 

dA/dN2 = A[d(pN)/dAf2](pN)-1 (26b) 

where p and N are evaluated at s’ = ti2”, which leads, since IV’ = Qz - il, to: 

dW” _ _ 
dM2 i 

Q2 ,“‘$dd) (““$P”>. (27) 

In Ey. (27), p” is the barycentric momentum at s = Qz, and 

We assume that N resembles the Born approximation, or, more precisely, that 
2 N 0~ (AI,, + 2p )-I, which gives 

p’d (log N) /dp2 w -2p”/(MvZ + 2p”) z -9;. (29) 

It is very important that (29) does not overwhelm the term 

p”d(log &/dp” = 52. (30) 

Our determination of the sign of A, and AZ therefore depends critically on the 
velocity dependence of the B-II potential. 

We should also include in y a factor x (z 2 32) to represent the fractional 
contribution of the B + n chamiel to the state of the B. It seems plausible that 
this factor should be omitted from 6. When we collect our guesses about the 
factors in (27), we conclude that /? and y should be about unity, but there is in 
our estimate a considerable uncertainty. From the experimental values of the 
mass differences we obtain: 

A1 = -0.63& 

AZ = +2.0&l. 
(31) 
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The correct signs of both A1 and AZ are reproduced by Eq. (21) for 5” 5 0 2 60”, 
for a large range of (positive) values of /3 and y. The correct order of magnitude 
is also obtained for reasonable values of p and y, although the ratio I’ = -AZ/A1 
turns out systematically to be about 2 or 3-empirically, 1’ = 5. For example, 
at a! = 3’; (0 = 24.1”) we find, independently of /3 and y, that r = al/i;. 

In the j = 3.2 ( - ) octet the value of 1’ is probably no more than unity (as yet, 
not all members of the octet have been found). It is likely that only the average 
value of AZ should be given by our simple model, and that a large contribution is 
also obtained from the baryon exchange graphs. This might arise in the following 
way: the B* exchange potential will be greatest for the states in which the ex- 
changed B* is lightest, that is, larger for S = 0 than for S = -2. This leads to a 
positive contribution to AZ for the P ljZ and F6!2 states, and a negative contribu- 
tion for the D3p state. 

Finally, we mention the effect of the vector meson mass differences. These may 
also give sizeable contributions to Ai and AZ . In particular, the failure of the 
G-O formula for the vector mesons reproduces itself in a failure of the formula 
for the baryons, unless one assumes with Sakurai (27) that this failure arises 
from interaction with an additional (0, 0) (singlet) vector meson. 

IV. THE EXCITED OCTET STATES 

The j = 3’2 ( - ) and j = yi ( + ) octet baryon states can decay into a member 
of j =Ji( +) octet and a pseudoscalar meson. If the SU3 symmetry were exact, 
the matrix elements M(j’ = >i, j) for these transitions would be given by linear 
combinations of the F and D types of terms, as in Eq. ( 1) for j = 1,;. The mixing 
angles for these matrix elements are independent of j, provided we neglect the 
differences in the angular momentum dependences of the various graphs; in 
particular, the baryon exchange graphs would have to be omitted. Alternatively, 
the B* potential will not generate differences between the mixing angles 0 if 0 
is close to that of the eigenfunction of the B* exchange potential (0 = Xl”). 

The nondegeneracy of the members of a supermultiplet leads to dynamical 
effects which completely change the matrix elements for decay. These effects 
arise from the dependence of the phase space factors and the centrifugal barrier 
penetration factors on the masses of the particles. We estimate their influence 
from the formula 

r = yp2y( 1 + uepy, 

where p is the momentum of the decay particles, r is the observed partial width, 
and y is a reduced width. We expect the ratios of the different y’s to exhibit the 
SU3 symmetry. The parameter a is a measure of the radius of the state; we shall 
use u-l = 1 Bev. (This parameter can be changed by 50%, without materially 
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affecting our resultss4) We note that in (32) with 1 = 1 (and a = o), 7 corre- 
sponds to the square of a pseudoscalar coupling constant. 

The form of Eq. (32) is suggested by the SchrGdinger and Bethe-Salpeter 
amplitudes. The widths I? could be calculated more precisely from the N/D 
method. We would assume that the nearby left hand cuts could be calculated 
from the SC,-symmetric model, and, if necessary, adjust the distant singularities 
to get the resonance at the correct energy W. The width of a narrow resonance is 
given by 

4j1’si”d(Re D(s)>/ds = p(s)N(s) (33) 

(evaluated at so = W”), where p(s) provides the factor pzZf’ in (36). Relative 
values of N are given by SC3 symmetry, except that we introduce the de- 
nominator in (32) to represent the fact that pN does not blow up at p + 3~. 
It is sufficient for our purposes to assume the parameter a is constant within a 
super multiplet and make a reasonable guess as to its value, instead of trying to 
calculate a from (33). 

The states N’ (1.512 Mev) and A’ (1520 Mev) are interpreted as members of 
the j = “2~ - ) octet. We use the following values for the partial widths: 

r( N’ + N + T) = I10 ?tIev (fw 

The uncertainty in these numbers is perhaps as much as 20% . We calculate from 
Eq. (33) (using 1 Bev as the unit) that’ 

y(N’ + N + T) = 12.4 

y(A’ + z + a) = 9.1 (34) 

r(A’ -+ N + K) = 7.1 

We wish to emphasize that the values above show directly that the interactions 
of K mesons and T mesons have a similar strength. 

Predicted relative values of the y’s are obtained by squaring the coefhcients 
in Eq. ( 16 a-d), and are plotted in Fig. 2. These values are normalized to a unit 
total decay probability for the (hypothetical) case of perfect SU, symmetry. 
The ratio y(A) -+ Z + =)/r(A’ + N + K) is quite sensitive to 0 and agrees with 
the empirical ratio for 0 = 28” f 5”. The ratio r(N’ --+ N + a)/[y(A’ + S + n) + 
T(A’ -+ N + K)] is almost independent of 0 in this range and is in excellent agree- 
ment with (34). 

4 In ref. 14, the value a =o was used. 
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FIG. 2. Reduced decay widths for decay of the 0212 baryon isobars, normalized to unit 
total two particle width. 

Since we have fit two ratios by adjusting the two parameters 0 and a this is 
perhaps not a significant test of SU, symmetry, even though the values do turn 
out to be extremely reasonable. However, we can now predict the reduced widths 
of the two remaining components of the octet (8’ and a’). These widths are also 
plotted in Fig. 2. They turn out to be somewhat smaller than the widths of the 
N’ and A’. It should be remembered that some theoretical uncertainty is intro- 
duced into the calculation of r through the use of Eq. (32). 

A new resonance at 1650 Mev (37) has been identified as the Z’ by Glashow 
and Rosenfeld (38). The widths agree with those predicted above about as well 
as one ought to expect. Glashow and Rosenfeld, assuming r(N’ -+ N + r) = 
80 Mev, obtain a = 2.8 Bev-’ and 0 = 35”. However, it seems that interme- 
diate values of a and e give the best fit. (Glashow and Rosenfeld also define a 
differently.) 

V. THE Pa/z RESONANCES 

The work of Chew and Low (30) as supplemented by the studies by Frautschi 
and Walecka (31) and by Bowcock, Cottingham, and Lurie (39)) shows that 
TIB scattering in P3p states is dominated by graph B2. In ref. 14, it was shown 
that with an R invariant coupling, the attraction in the (2, 2) state was one-half 
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FIG. 3. The solid lines give the strength of the bargon pole term in B-II scattering, versus 
the mixing angle 0, in various SU multiplet.s, relative to a unit pole strength in T = 32’ N-X 
scattering. The dashed lines give the effective pole strength in S = 1, 2’ = 0 and 5” = 1, B-n 
scattering, when the (Xv), (AT), and (Z) channels are omitted. 

that in the (3, 0) and (0, 3) states. When R invariance is given up, the relative 
potentials from B2 are as plotted in Fig. 3. For the values of 0 which are con- 
sistent with those suggested in the earlier part of this paper (15” 5 6 5 -Go) 
the (3, 0) potential is between two and three times as attractive as the (2, 2) 
potential, and the (0, 3) potential is either very weak or repulsive (39) .’ That 
a P3,2 resonance should occur in the (3, 0) supermultiplet (if at all) is therefore 
an unambiguous prediction of Sti3 symmetry. This IO-fold supermultiplet 
evidently contains the following states: N$,z , Yl*, Er,t , and Q, ; the last is an 
X = -3 state which is expected to be stable under strong interactions.6 

5 Cell-Mann has also calculated the (3, 0) and (2, 2) potentials (private communication). 
6 Glashow and Sakurai (3.9) have suggested that a mysterious cosmic day event, observed 

by Eisenherg (34) might, be interpreted as the weak decay L2- + Z” + K-, with JIfi = 1090 
MCV. 



432 CUTKOSKY 

Since the potential in the (2, 2) states is also attractive, we would expect that 
the mass differences could easily produce large admixtures of (2, 2) components 
into the states of the IO-fold supermultiplet. For example, the T = 3.i, S = 0 
members of the (3, 0) and (2, 2) supermultiplets are both mixtures of (NT) 
and (zK) states. In the original theory of the N* 312 resonance, it was necessary 
to cut off the integral for Re D(s) at such a place that the main contribution to 
the integral came about 600 Mev above the IAN threshold (or Q2 5 3M,‘, in 
the notation of Eq. (28) ). At this energy, the (BK) chamrel is just opening. 
Therefore, the Nz,s is associated predominately with the (NT) channel, or in 
other words, with an almost equal mixture of the (3, 0) and (2, 2) states. 

Cutkosky, Kalckar, and Tarjanne (14) suggested on the basis of these ob- 
servations that in the ReD integral for the Y1” state, it would be a reasonable 
approximation to omit the (Z;11) and (EK) channels, and assume the phase 
space was equal in the (AT), (Zr) , and (Nk’) channels. In fact, even though the 
(NE) chamlel is closed at the resonance, the (NJ?) phase space is bigger than 
the (2~) phase space when El > 1580 Mev. On diagonalizing the three chamrel 
Born matrix, we obtain for the resultant effective pole strength the values given 
by a dashed curve in Pig. 3. We also obtain, within about 5% over the range 
0 5 6 2 65”, the widths 7~~ = 0.3 -ye*, or ry, = 0.07 rnn . The experimental 
value is Tz, 5 O.O4r*, . 

These values, and their insensitivity to 0, can be understood as follows: The 
wave functions for the S = - 1, T = 1 components of (3,O) and (2, 2) (as ob- 
tained, for example, from table 19d of ref. 21 are: 

4q3,O) = B-““[(Nk’) + (Z7r) - (I”K)] + M(h) - (2T?)] 

$(2, 2) = ti-“‘[(Nh;) + (ZK)] + (,3.io)1’2bi-) + (Zq)]. 
(33) 

We observe that it is possible to eliminate bofh the (27) and (ZK) components 
by forming the combination 

6l”$(3, 0) + .?1~‘~3/(2, 2) = 2(Nk’) + (.%I-) + 6*‘2(Ar). (36) 

This is a very good approximation to the eigenstate of the truncated Born matrix 
for 0 5 0 5 6.5”. It actually gives a somewhat smaller value for rz, than is quoted 
above. 

Only the (Z?r) component of the ST,2 is directly observable. The amplitude of 
this component is x, if we assume the ’ Z&, is a pure (3, 0) state. Even if we 
add enough of the (2, 2) configuration to cancel the (ET) component, this am- 
plitude is only changed to ( s$)“2, so it does not much matter which value we use. 

The total widths of the Nz,2 , Y1*, and & may be estimated from (32) as 
follows : 
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I%*) = (llpLJ’[p%, + 6pLlIYN&z) = 0.4IYN&) 

r(&) = (7p~,)-‘[2p~,lr(N~,z) = o.osr(G,,,). 
( 37) 

The available data is uncertain, but is compatible with these ratios. 
The mass differences within the (3, 0) multiplet may be estimated by the 

method of Section III; we shall only describe the results briefly.’ If we assume 
pure (3, 0) states (which is somewhat contrary to the conclusions above) we 
find that the G-O formula follows from its validity for baryons and pseudoscalar 
mesons. In t,his ease, the formula implies a constant difference A’ between J/’ 
values of successively stranger resonances. One finds, in the notation of Section 
III: 

A’ = ‘,;/3Az + !@A, + ? iy61 . (38) 

We estimate 0 and y from (27~30), with the following changes: we now take 
~2” = 3MB2, and make the seemingly plausible assumption that the p2 dependence 
of N can be neglected. This gives /3 s 3 and y M 6, which leads to a value for 
A’ which is twice that observed. 

Although the trend of the mass values is correctly reproduced, this numerical 
discrepancy is rather discouraging, because to do better one would need to ex- 
amine in some detail how the left hand cuts conspire to produce the effective 
cutoff of N. Fortunately, as is well known, calculated widths are not subject to 
these uncertainties. 

Figure 3 shows the force in the (0, 0) multiplet, and also the effective attrac- 
tive force in the S = - 1, T = 0 state when only (Nk’) and (Z?r) channels are 
included. These potentials are extremely sensitive functions of the mixing angle, 
so it is not possible to say anything about the existence of an S = - 1, 2’ = 0, 

Z’3,2 resonance without a better estimate of 19. It is conceivable that the I’“* 
could be such a resonance. 

ilPPENDIX 

This appendix has been prepared with the cooperation of Dr. Pekka Tarjanne. 
It presents some elementary algebraic techniques which we have used to cal- 
culate the potentials. The reader is assumed to be familiar with such qualitative 
features of the irreducible representations (X, p) as their hypercharge and isospin 
content, but a knowledge of the general formal apparatus of continuous group 
theory or of any special explicit form for the representation matrices is not re- 
quired. i\lost of the results derived here, apart from the crossing matrix, have been 
published elsewhere ( 1 /t, 21) . 

7 The author was assisted in the calculation by P. Tarjanne. 
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The group SUB is characterized by an eight-component spin vector G which 
obeys the commutation relation 

[G, , G,,] = - F:,,Ge . (A.11 

In the three-dimensional representation (1, 0) we write G = 31. In the eight- 
dimensional adjoint representation (also often called the regular representation), 
denoted by (1, I), we have G” = F”. Auxiliary matrices D” are defined by: 

(Aa , Ab} = 2b + D&Xc . (A.2) 

The normalization has been fixed so that Tr X,& = s&b . The equivalence of 
all three indices of F and D is proved by forming the trace of Xd times (A.1) 
and (A.2). 

The eigenvalues of the Casimir operator G” = G. G, as calculated by the 
classical methods (11, 36)) are: 

@(A, gL) = 20” + A/J + /.?I + 6(X + P). (A.3) 

The particular values of G2 which we need may also be calculated from properties 
of the X, F, and D matrices, as we shall show below; for instance, from (A.2) 
we have G2( 1, 0) = X”X, = 8. For each c c a @ b we define 

M(c; a, b) = (G(a).G(b))c = l/z’[G”(c) - G”(a) - G”(b)]. (A-4) 

Since the trace of any G, is zero, the average of W(c) over all states vanishes 

cc d(c)M(c; a, 6) = 0, (A.5): 

where d(c) is the dimensionality. We may verify that G”( 1, 1) = 18, or, in 
other words, that Tr F,Fb = 18&b, by applying (A.4) and (A.5) to the de- 
composition (1, 0) 0 (0, 1) = (1, 1) @ (0, 0). 

Substitution of (A.l) and (A.2) into the identities 

[Aa, {A,, A,}] =(ib ,[kz, AC]] + {ba , xb], xc) (A.61 

and 

[Aa, [A,, kc]] =(A,, (Aa, Lb]} - Ix,, (Aa 3 xc11 (A.7) 

leads to the following commutators: 

Pa , D&d = -F;bDcdr (A-8) 

[Da , D&d = --4(&cSbd - &&be) - F:bFcdr . (A.91 

An anticommutation relation is obtained from the expression 

{F, , FtJed = 35 Tr  {A&b , [A, , Ul + k& , [ib , Lll} 
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and (A.7) : 

IF,,, Fblld + {Da, Dblcd 
= 2&D,,r, + 8 &b&d - a(&sbd + &d&b). (ii.10) 

From (A.10) it follows that Tr D,&, = 10&b . 
Equation (A.8) shows that, in the (1, 1) multiplet there is an additional 

vector D. Therefore, in the direct product of two representations, the quantities 
k(c) = D(a) .D(b) and W(c) = G(u) .D(b) are scalars. Since Tr D = 0, one 
finds in analogy to (A.5), that 

c d(C)LG(C) = 0, c d(c)W(c) = 0. 

Note that F and D transform differently under the chargeehypercharge reflec- 
tion R; oue can say that TV is a pseudoscalar under R. 

We are concerned here with forces between two particles which belong to 
octets. Since the coupling to these particles of octet mesons is proportional to a 
linear combination of F and D, the meson exchange potentials will be linear com- 
binations of 111, #, and IV. Graphs RI-3 involve similar combinations of F 
and D matrices, but with the indices interchanged. We write N and X for the 
modified versions of M and 31 defined by the graphical structure. In a similar 
way, by interchanging indices in W, three related operators are obtained. From 
the symmetry properties of the F’s and D’s one finds: 

N = ME, and A = i@,!C, (A.11) 

where Baa&p = 6,&b is the operator which interchanges the two interacting 
particles. 

The first step in calculating the values of these operators is to note that we 
can immediately identify the following as normalized projection operators onto 
the symmetric and antisymmetric octets and the singlet: 

(P,):B, = 10-‘D,,,D’bp 

(P&B, = 18-‘F,,,FrbS (A.12) 

(P,)8! = 8-‘6,,6bb. 

The commutator (A.1) gives the relation 

N = Af + 18P, . 

An expression for % is obtained by adding (A.9) and (A.lO) : 

il3 = AI + 181’, + 10Ps + 32P,, - 4. 

We evaluate W2 by viewing it from the crossed channel: 

W2 (crossed) = - Mi@. 

(A.13) 

(A.14) 

(A.15) 
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Using (A.l-l), and crossing back, we obtain: 

W2 = 36 + 288Po + 90(Ps + PA) - M2. (A.16) 

Since W anticommutes with R, it must vanish in the (2, 2) and (0, 0) multiplets, 
and have opposite signs in the (0, 3) and (3, 0) multiplets. Within the ( 1, 1) 
component, W causes S -’ -4 transitions. This can be seen most directly by 
applying W to P, and P, , and then using the symmetry properties of F and 
D to relate the result to M and %l. We write: 

Then we have: 

( 180)“2Q:! = F,,,~DrhP + D,,,FrbB. (A.17) 

Q” = Q = Q+, (A.18) 

W(1, 1) = (45)“2Q. (A.19) 

The sign of W in the tenfold multiplets involves a question of notation. Our 
convention is that, if in the snls vertex ( 1) the F and D terms are combined with 
nearly equal coefficients, it is the ,v?rN and &Z couplings that are enhanced, 
and the Z’?rX and ,VvN couplings that are depressed. In this situation, the po- 
tentials in the 2B states with hypercharge -2 depend mostly on a exchange, so 
in the T = 0 and T = 1 states, which belong, respectively, to the (0, 3) and 
(2, 2) multiplets, the potentials must have opposite signs. Conversely, the 
hypercharge +2 potentials involve mostly q exchange, so we infer that the 
(3, 0) and (2, 2) potentials are similar. Therefore, we conclude that W( 3, 0) > 0, 
W(0, 3) < 0. 

Equations (A.ll)-(A.19) were used in calculating the potentials in Table I 
and Eqs. (5) and (6). These identities, when used with (A.4) and (A.5)) are 
also sufficient to determine G2 for the representations involved. 

It may be noted that the discussion given above can be generalized to SU, , 
with only trivial modifications arising from the changed dimensionality. In fact, 
the algebraic structure of a self-consistent SU, model is rather similar for all 
7% 2 3 (16). 

Projection operators for the remaining components of (1, 1) 0 (1, 1) are ob- 
tained by: ( 1) symmetrizing, (2) subtracting PA , or P, and PO , (3) distinguish- 
ing between (3, 0) and (0, 3) by the sign of W. The normalized operators are: 

I’(2,2,.,.b,9 = ?/2(&b&3 + &z&b) - pSm,b,9 - POaa,bfl 

P (3,O)au,bj3 = ?“‘$?“$j/2(‘%b &!I - 6~5 &b> - pAaa.bjd 

+ 24-1(F:bD,p, + D:bF++) ‘(A.20) 

~‘(a,31 aa,bfi = ~[~(&b&t, - &9&b) - PAau,bS] 

- 24-‘(F;&r + D:bFap). 
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The crossing m&ix A,, is defined by 

P rc@,ba = c, A.r,P,wx, b0 , (A.21) 

(for completeness, the P’s in C A.2 1) must include Q) _ This matrix determines the 
contribution of graphs Bl-3 when the exchanged baryon state belongs to the 
representation s. The elemenk of A, as calculated from (A.121, (A-17), and 
(A.20), arc giwm in Table II. 

The author is grateful to many persons for int,eresting discussions, especially to I>r. 
Pekka Tarjanne, who has also checked most of the calculations. The greater part of the work 
reported here was carried out, while the author was a guest at NORDITA (Copenhagen, 
I)enmark), and was partially supported by an NSF Fellowship. The nut her thanks thrsr 
organizations for their kindrwss. 
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